Proceedings of the NROCK 2023

The IV Nordic Symposium on Rock Mechanics and Rock Engineering ISBN 978-9935-9436-2-0 DOI 10.33112/nrock2023.4 © The authors, IGS & ITS: All rights reserved, 2023

SINTEF-TRIPOD in Underground Design – An Important Rock Engineering Tool

Nghia Quoc Trinh (nghia.trinh@sintef.no)

Nghia Quoc Trinh SINTEF, Trondheim, Norway Eivind Grøv SINTEF, Trondheim, Norway

ABSTRACT

Many rock engineering projects today may face rock mechanics challenges such as particularly complicated geometry or excavation plan, and complicated geological conditions. There may be no similar existing experience to lean on. Thus, empirical methods have limitations and uncertainties in such cases. Therefore, SINTEF has developed a reliable rock engineering tool to deal with the challenges. The tool is a combination of Investigation, Numerical modelling, and Monitoring. We use the term "SINTEF-TRIPOD" for the methodology. This paper presents the application of the SINTEF-TRIPOD for few important infrastructure projects in Oslo, which are Follo Line metro project and a water supply project.

KEYWORDS

Metro tunnel; Water supply cavern; Investigation; Numerical model; Monitoring.

INTRODUCTION

SINTEF has developed a toolbox to deal with rock engineering challenges in underground caverns and tunnels. This is given the name "SINTEF-TRIPOD", and it is a combination of three components "Investigation tools – Numerical modelling – Monitoring". The SINTEF-TRIPOD has been developed initially based on SINTEF's experience in the mining industry, and it is now applying also in infrastructure projects.

The first component of the toolbox is "Investigation". Our investigation tools are including stress measurement, laboratory tests, and geological mapping. Stress measurements are carried out before and during construction phase of the project. The measurements include both 2-D and 3-D in relevant locations close to the concerned area. Laboratory tests for obtaining intact rock mechanics properties are carried out in connection with the stress measurements. Geological mapping is carried out to obtain the rock mass characteristics and conditions of the site. The investigations provide input parameters for numerical modelling. Based on the input data, a more reliable numerical model can be established to provide information for further evaluation and decision-making. To increase the reliability of the model even further, it is then followed, verified, and improved along the way by communicating with monitoring equipment. Early verification can be done with available information at early stage, such as existing conditions, current excavation status. Any discrepancy between the model and in-situ observation or monitoring data must be studied carefully to detect the pitfalls and possible improvement. A working model applied by SINTEF combines stress measurement, laboratory, numerical modelling, and monitoring as typical shown in Figure 1.

This paper presents application of the SINTEF-TRIPOD for two infrastructure projects as shown in Figure 2 in Oslo, Norway. The first project is Follo Line – a metro project connecting Oslo central station to Ski. The second project is a New Water Supply Oslo.

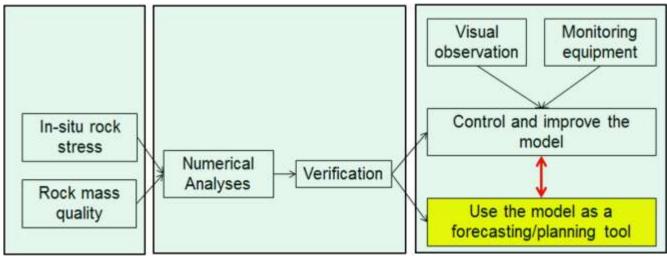


Figure 1. Recommended working model for combining measurement, laboratory, numerical modelling, and monitoring (Trinh et al., 2016) – Three green boxes represent three components of the SINTEF-TRIPOD.

1. FOLLO LINE PROJECT

1.1. Project Information

BaneNOR (Norwegian National Rail Administration) has decided to construct the Follo Line Project with new railway tunnels connecting Oslo and Ski. The excavation period commenced in 2015, and it is scheduled for operation in early 2023. In 2015, the estimated cost of the project was 25 billion Norwegian kroner (NOK) (Kruse, 2017). The location and layout of the Follo Line project and the junction is shown in Figure 2.

The project comprises a 22 km long twin-tube-tunnel to be excavated mainly with tunnel boring machines (TBM, D = 9.96 m), but also by drill & blast and drill & split (D = 9.5 m). The drill & blast and drill & split tunnel section was in the first part of the Follo Line tunnels, near Oslo Central Station, and where the Follo Line tunnels go below the Ekeberg tunnels. Vertical distance between Follo Line tunnels and Ekeberg tunnels in this junction was just less than 4 m, as shown in Figure 2. This made the construction of the intersection to be very challenging. In addition, the Ekeberg tunnels have high traffic as part of European highway No.18 and No.6. Thus, the construction of the Follo Line tunnels in this intersection is performed with the following requirements from The Norwegian Public Roads Administration (SVV):

- No negative effect on the stability of the Ekeberg tunnels.
- No stopping of traffic in the Ekeberg tunnels during the construction of the Follo Line tunnels. Thus, the stability of the existing tunnels must be ensured at all time.
- Any risk of instability in the existing tunnels must be detected beforehand to make necessary precaution actions.

Since 2014, SINTEF has assisted Bane NOR in dealing with the rock mechanics challenges and safety requirements for the construction of the mentioned intersection in this project. To meet the requirements from SVV and to study the stability of the existing Ekeberg road tunnels and the Alna river tunnel in connection with the construction of the Follo Line tunnels, SINTEF uses a comprehensive approach, which is a combination of three components: Investigation – Numerical modelling – Monitoring, forming a rock mechanic tool for the project.

1.2. Investigations

Detailed description of the geological conditions and different surface and sub-surface investigations had been presented in Holmøy et al. (2015). This paper briefly presents the in-situ rock stresses measurements and rock mass properties.

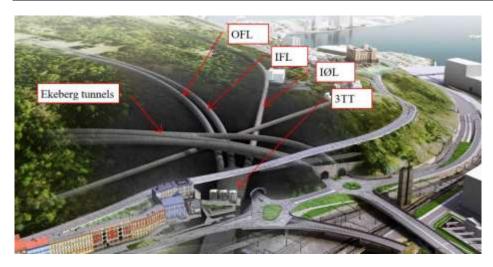


Figure 2. Junction between Ekeberg tunnels (existing) and the Follo Line tunnels with the following names: Inbound Østfold Line (IØL), Inbound Follo Line (IFL), Outbound Follo Line (OFL), 3-Tracks Tunnels (3TT) (BaneNOR, 2021).

In pre-excavation stage, SINTEF carried out stress measurements in 2011 and 2012. During excavation of the Inbound Østfold Line (IØL), in 2016 when the tunnelling face was at chainage 1890, an additional 3D stress measurement was carried out to obtain the in-situ stress condition at the site. The measuring method was overcoring method, as described in Trinh et al. 2016. The measurements in 2011, 2012, and 2016 were 3D- and 2D-stress measurements. Results from the 3D-stress measurements are given in Table 1.

The in-situ stress level measured in 2016 was much higher than the measurements in 2011, sigma 1 was twice and sigma 3 was 5 times higher than the measurements in 2011. This may be explained by a local weakness zone or maybe caverns/tunnels or the existing Alna river tunnel not too far away from the location of 2016 measurements. Comprehensive calibrations of the numerical model with result of stress measurements in 2011 and 2016 were done during planning and early construction stages of the Follo Line project. It was found that all the numerical model results with input from 2016 measurement gave far higher values than the results obtained from 2D stress measurements measured in the existing infrastructure, whilst with input from 2011 measurement, the numerical model results fitted quite well. Thus, it was decided that the results from the stress measurement in 2011 can be used as a representative in-situ stress for input in the numerical model for this project. In-situ stress for the model was estimated based on the measurement in 2011. At elevation zero, the sigma in east-west direction was 10 MPa, north-south 6 MPa, vertical 4.5 MPa, and the stress had gravitational gradient.

Table 1. Results from 3D-stress measurements carried out by SINTEF.

Year of measurement	Measured Stress 3D overcoring	Magnitude (MPa)	Dip direction (degrees)	Dip (degrees)
2011	Sigma 1	9.9 ± 1.9	N248.4	24° SW
	Sigma 2	7.5 ± 1.9	N145.0	27° SE
	Sigma 3	1.9 ± 2.8	N14.0	61° SE
2016	Sigma 1	21.6 ± 2.1	N338	35° SW
	Sigma 2	17.3 ± 3	N224	27° SE
	Sigma 3	10.9 ± 0.9	N104	61° SE

During early establishment of the model and simulation, the inputs for rock mass properties has been estimated based on mapping and laboratory tests. Results of this model were verified with the registered data obtained from monitoring equipment (stress change and displacement in connection with the tunnelling progress). Through certain construction progress, a very comprehensive calibration and testing of the model with collected data from monitoring equipment were carried out. This work was done with weekly excavation reports and monitoring data. Result of this calibration was that the rock mass properties used in the initial analyses were updated. The updated inputs of the rock mass properties for the 3D numerical model are rock mass Young's modulus (Em)= 10 GPa, poisson ration is 0.15, internal friction angle = 55 degrees, and cohesion is 2 MPa.

1.3. Numerical model

Based on the scanning of the existing tunnels and the drawings of the planned Follo Line tunnels, a 3D numerical model was established. FLAC3D (Itasca, 2021) code was used to model a 3D picture of the crossing of these tunnels. Geometry of the Ekeberg and Follo Line tunnel system is presented in Figure 3. When constructing the geometry for the simulations, the excavation method and sequence were modelled as per a specific process according to the contractor's plan.

The excavation method was conventional "drill and blast" in the area outside the crossing. Whilst near or under the existing tunnels, the excavation method "drill and split" was applied to minimise damage to the rock mass around the tunnel. In the "drill and blast" sections, a normal pull length of 5 m for each blasting round was used. In the "drill and split" section, a pull length of 2.5 m for each splitting round was used. Thus, in the model geometry, the Follo Line tunnels were divided into every 5 m and 2.5 m in the "drill and blast" and "drill and split" area, respectively. By doing this, every excavation step was simulated to obtain the whole development of stress distribution and displacement from the starting of the construction process. Simulation process in this project is as follow:

- Simulation 1: No excavation in the model. This simulation was dedicated to obtain the original in-situ stress condition within the site boundary.
- Simulation 2: All existing tunnels were excavated to model the existing condition, before the construction of the Follo Line tunnels. This simulation was done to obtain the existing stress situation and deformation and verify with the observation and 2D measurements in the existing tunnels. This step was considered as an early verification of the model.
- Simulation 3: This was the most complicated simulation for the project, where all the planned excavation steps and sequences were strictly followed: 63 simulation steps for the excavation of the Inbound Østfold Line, 58 simulation steps for the Inbound Follo Line (IFL) and Outbound Follo Line (OFL), 65 simulations steps for the "Three tracks" tunnel.

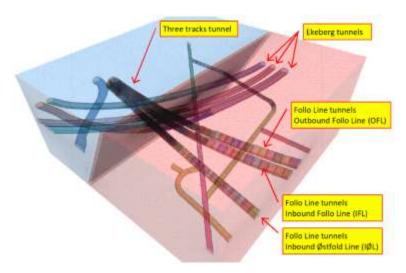


Figure 3. Geometry of the 3D numerical model for the intersection between Follo Line tunnels and Ekeberg tunnels.

Figure 4. Distribution of sigma 1 at final excavation stage – Vertical section along IFL (negative value means compression).

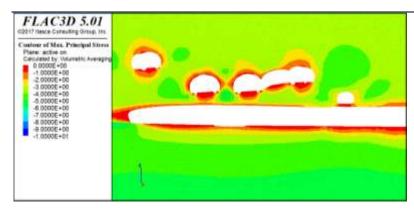


Figure 5. Distribution of sigma 3 at final excavation stage – Vertical section along IFL (negative value means compression).

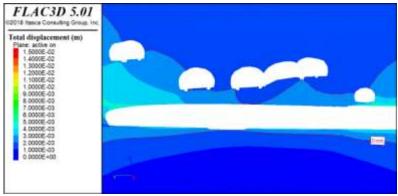


Figure 6. Distribution of displacement at final excavation stage – Vertical section along IFL.

Some results of the 3D-model are shown in Figures 4 to 6. According to the figures, the following comments were made:

- The maximum stress component (sigma 1) around the tunnel was estimated to increase slightly from about 12 MPa (in-situ original condition) to about 17.5 MPa. In the critical area (the horizontal rock pillar between Follo Line tunnels and Ekeberg tunnels), the model estimated the same amount of stress increase.
- The minimum stress component (sigma 3) around the tunnel decreases from about 5 MPa (in-situ original condition) to about 2.5 MPa. The reduction is approximately 2.5 MPa.
- The tunnel excavation results in a displacement of about 2 to 3 mm around the tunnel. Below the existing Alna river tunnel, the model showed that displacement in the new tunnel is from 4 mm to 6 mm. It is thus expected that the maximum displacement in the junction will be 4 to 6 mm after completion of the construction of Follo Line tunnels.
- Before excavation of the Follo Line tunnels, the model result showed yield elements in the floor of the Ekeberg tunnels; whilst after excavation of the Follo Line tunnels, the model results showed slightly more yield elements in the horizontal pillar.
- In general, the model results showed that there is a certain impact from the excavation of the Follo Line tunnels on the Ekeberg tunnels. However, the amount of change was estimated to be modest (stress change of about 5 MPa, and the displacement change of 2 to 6 mm depending on excavation stage). Model results gave an impression of overall stable condition for both tunnel systems.
- A monitoring system consists of extensometers and long-term-door-stopper monitoring (LTDM) were installed at key locations for better control of the stability situation. The monitoring system will be presented in the next chapters.

1.4. Monitoring of stress and displacement

In this project, it was very important to catch the stress and displacement development in very early stage, well before any instability problem may appear. The purposes to get early information were:

 Early information can be used to calibrate the numerical model, improving the model during the early construction so that the model becomes a reliable tool for testing the critical excavation stages – excavation close to or directly below the Ekeberg tunnels.

- The stress redistribution and displacement development in the rock mass can be followed from the beginning, so that any unexpected development can be detected in a good time for further study and actions.
- Early registered data from monitoring equipment can be used with the corresponding rock mass behaviour observed during the construction to design and test the warning system well before the construction progress to the critical area under the Ekeberg tunnels.

Description of the monitoring program and warning system can be found in Trinh et al. (2016 and 2021). The locations of the monitoring system are presented in Figure 7.

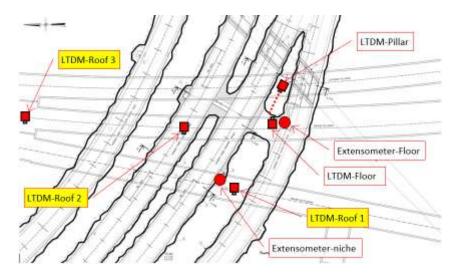


Figure 7. Locations of monitoring equipment for monitor the stress and displacement (Trinh et al. 2021).

Data from monitoring equipment was used to control the quality of the numerical model, to make the model becoming a reliable forecasting tool. Results from the numerical model were compared with the stress data from the monitoring devices, the data from two critical LTDMs ("LTDM-Pillar" and "LTDM-Floor") are presented in Figures 8 and 9. These two LTDMs were installed to monitor the stress evolution in the existing Ekeberg tunnels as a result of the excavation of the Follo Line tunnels. The LTDMs were installed at the most critical locations, where the Follo Line tunnels were at their closest to the Ekeberg tunnels – less than 4 m vertical distance. Both LTDMs were installed in May 2015, when the excavation of the Follo Line tunnels was still a very long distance away (more than 150 m) and, therefore, having practically no influence on the Ekeberg tunnels. Early installation of the LTDMs provided a good possibility of obtaining, from the start, the evolution of induced stress in the Ekeberg tunnels as the excavation of the Follo Line tunnels approached. Any abnormal change or evolution of stresses during the excavation progression could be detected early enough to implement appropriate precautionary measures, if necessary. The early monitoring data were also used for model verification.

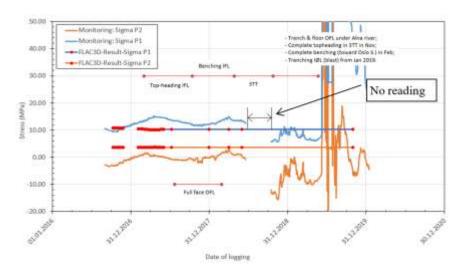


Figure 8. Comparison of stress from monitoring (LTDM-Pillar) versus numerical model.

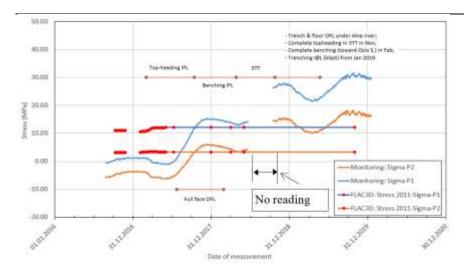
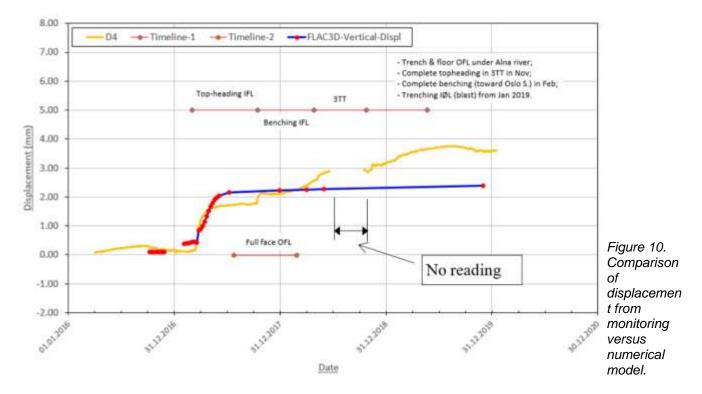



Figure 9. Comparison of stress from monitoring (LTDM-Floor) versus numerical model.

The results from the numerical model and the recorded data at the "LTDM-Pillar" shows that they fit relatively well as shown in Figure 9. The model results versus the monitoring data for the "LTDM-Floor" are presented in Figure 10. As can be seen from the figure, the model results did not fit well before September 2017. After September 2017, the stress in this location quickly increased, and the model results fitted better with the monitoring data. A possible explanation for this could be joint movement and better rock contact to increase the stress evolution. After the "no reading" period, data from the LTDMs became unreliable as pointed out in Trinh et al. (2021).

Displacement result from the numerical model was compared with the data from "Extensometer-Floor", as shown in Figure 10. It can be seen that the model result fit well with the monitoring data. During the critical excavation stage (fourth quarter 2017 to first quarter 2018), the model can predict the displacement with only less than 0.5 mm discrepancy. After critical period, the monitored data was deviated from numerical result due to additional blasting work and may be some drifting of the extensometer. More detailed information for stress and displacement comparison can be found in Trinh et al. (2021).

2. NEW WATER SUPLY PROJECT

Oslo is the fastest growing city in Europe. The prognosis indicate that the population growth will continue. Today 90% of the water supply to Oslo is from a limited source named Maridalsvannet and its water treatment plant at Oset. This makes the city very vulnerable to incidents that strikes either the source or the treatment plant. The municipality of Oslo is therefore in the process of building a secondary water supply. According to the plan, by 1st January 2028 the new water supply to Oslo will be ready. The new water treatment plant is located at Huseby. The treatment plant consists of six large caverns with cross sections varying between 20m x 24m to 26m x 43 m. In addition, an assembly chamber for a TBM is being excavated within this underground complex. The treatment plant consists of three different levels and is a complicated system of caverns and connecting tunnels. The volume is approximately 1 million m3 which is all excavated in a relatively small area (Mørck et al., 2022).

Based on initial geological investigation and design, it was expected that the geological conditions were not very favourable in this underground treatment plant. The plan was to use heavy rock support with arches of lattice girders in combination with rock bolts and sprayed concrete. As a reference, similar but smaller and less complicated caverns nearby were built using the same rock support concept. There was also identified several weakness zones, adding the reason for the need of the designed lattice arches.

VAV found it necessary to follow-up the effect the excavation of such a large volume on such a small area could have on the stress conditions in the rock mass and the potential deformations in the caverns. In collaboration with the contractor Skanska, SINTEF was engaged to model the development of the stress redistribution and displacement before starting the actual excavation. The same SINTEF-TRIPOD procedure was applied in this project as in the Follo Line project. The simulation campaign is as follows:

- Investigation: Simulates the situation in-situ at the starting point of the project, before the tunneling and blasting work starts.
- Numerical model: Comprehensive 3D numerical model was established using FLAC3D program. Several simulations were carried out in certain order with clear objectives for each simulation steps. This to follow the planning and construction closely, helping the project team in making correct decision.
- Monitoring: Stress and displacement are monitored continuously, and the measured values are compared to the modelled values. The model is updated and calibrated with the observations made in the surveillance program. This gives us a strong basis for deciding and verifying the rock support. So far, the measurements have confirmed that the rock support is sufficient for both local and global rock stability.

The comprehensive simulations and the monitoring gave the project owner's side team the confidence to downsize the rock support in the caverns. The caverns are now supported by 20 cm thick sprayed concrete applied in two layers and rock bolts (L= 5-6 m, phi=22mm, C/C = 1.75) applied between the two rounds of sprayed concrete. Examples of simulation result are presented in Figures 11 to 14. Based on the results from the numerical model, a list of areas have been identified for frequent visual inspection throughout the excavating process. So far, fracturing of sprayed concrete has been found, which could be due to overloading, but may also be shrinkage. No or very little spalling of sprayed concrete have been found.

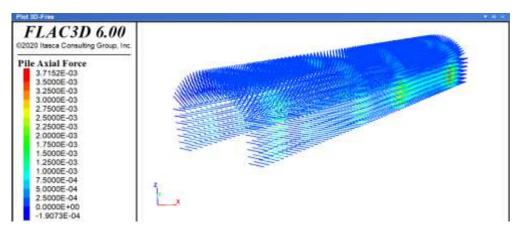


Figure 11. Axial force in the systematic bolts. The result indicated that maximum axial load on bolts is 0.37 ton, whilst the capacity of the bolts is design to be more than 30 tons.

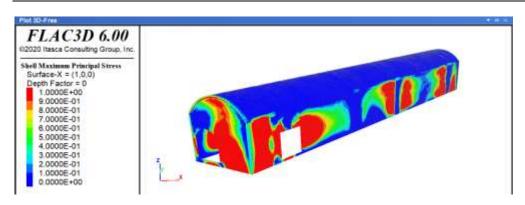


Figure 12. Minor principal stress (due to mathematical convention in FLAC3D this is named as "maximum principal stress") in sprayed concrete. Red areas indicate tensile stress is larger than tensile strength of the sprayed concrete.

Minitoring at VAV Oslo - MPBX1

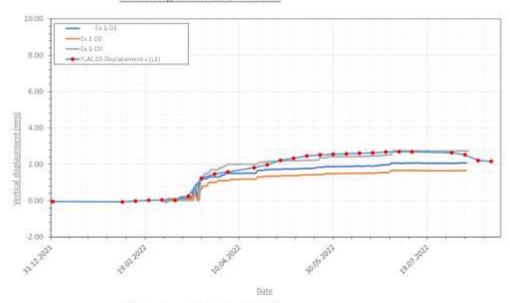


Figure 13.
Deformations modeled versus recorded deformations in extensometer MPBX1.
FLAC3D result was for the anchor point closest to the cavern (Ex.1-D3).

Minitoring at VAV Oslo - MPBX2

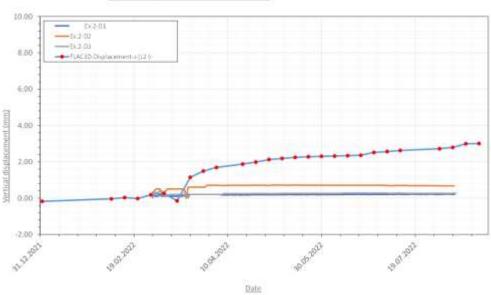


Figure 14.
Deformations modeled versus recorded deformations in extensometer MPBX2.

3. CONCLUDING REMARKS

The Follo Line project was successfully excavated in 2019. Experience from the construction was that the entire rock mechanics procedure (the SINTEF-TRIPOD) was working smoothly providing reliable information for evaluation of the safety situation for both new and existing tunnels. With help from other components, the 3D numerical model established for the Ekeberg and Follo Line junction demonstrated that it is a reliable tool for planning and construction of such complicated crossings.

The application of the SINTEF-TRIPOD to the New Water Supply project provided vital inputs to optimise the rock support for the underground complex. Project cost saving from the optimisation process was estimated to be more than 100 million Norwegian krone. It is also expected lot of time saving from construction work with the reduction of the rock support.

The described rock mechanic toolbox (the SINTEF-TRIPOD) in this paper can be divided into three components, which are:

- Investigations: Stress measurements 2-D and 3-D, laboratory tests, and geological mapping. The investigations provide input parameters for the numerical model.
- Numerical model: Comprehensive numerical model (two- and/or three-dimension) was established for stability analyses of the project. The numerical model should be able to include as much as possible the geometrical details such as existing and future tunnels, and the construction sequence was simulated carefully. The obtained results were used for model calibration in the existing tunnels and evaluation of the overall stability related to the construction of the new tunnels.
- Monitoring: A monitoring program was established to monitor the displacement and stress change at the
 junction during the construction of the Follo Line tunnels. The monitoring program was established for
 stability monitoring and the data was also used for model calibration.

With successfully application in these projects, it is believed that the SINTEF-TRIPOD toolbox with combination of three components (Investigation, Numerical model, and Monitoring) are important pillars for dealing with any challenged rock engineering project.

REFERENCES

- Kruse HC 2017 Bane NOR presentation in "Supplier Meeting 2 February 2017". (https://www.banenor.no/contentassets/c0667e70caf7487f999232196f66cd2d/4.-follo-line-project---hans-christian-kruse_en.pdf). Access on 06 August 2020.
- BaneNOR Homepage 2021 (https://www.banenor.no/Prosjekter/prosjekter/follobanen/omfollobaneprosjektet/innhold/2018/bane-nor-lyser-ut-fire-nye-kontrakter-i-follobanen/). Last accessed 2021/03/10.
- Holmøy K.H., Trinh Q.N., Backer L., 2015 3D-numerisk analyse, Follobanen/Ekebergtunnelene FJELLSPRENGNINGSTEKNIKK, BERGMEKANIKK CONFERENCE 2015, S Engen ed pp 26.1–12 (Tekna, Oslo, Norway).
- Trinh Q. N., Holmøy H. K., Larsen T., and Myrvang A. 2016 Continued rock stress and displacement measurements 6combined with numerical modeling as an active, realistic rock engineering tool. RS2016 Symposium, 7th International Symposium on In-Situ Rock Stress, Johansson, E., Raasakka, V. ed (RIL, Tampere, Finland) pp. 181–93.
- Itasca Homepage 2021 (https://www.itascacg.com/software/downloads/flac3d-5-01-update. Last accessed 2021/05/25).
- Trinh Q. N., Holmøy, K. H. and Sagen H. W. (2021) Challenging Infrastructure Project Assisted by Monitoring and Numerical Modelling as the Follo Line Tunnels were Excavated Below Existing Tunnels. Journal of Rock Mech Rock Eng 54, pp 1671–85.
- Mørck I., Thorsen S., Grøv E., Trinh Q.N. 2022 New water supply oslo caverns for the new water supply: rock support, stress and strain development. FJELLSPRENGNINGSTEKNIKK, BERGMEKANIKK CONFERENCE 2022, S Engen ed pp 39.1–21 (Tekna, Oslo, Norway).